Chapter 18: Streams Computation with Files 701

outfile.close();
return 0; // successful copy
!
void main(int argc, char *argv(])
{
cout<< "cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.\n";
if(argc < 3)

{
cout << "Usage: cp <source file> <destination file>";
exit(1),

}

if(CopyFile(argvi{ll], argv(2]) !'=0)

cout << "\nfile copy operation failed.";

}

Runi
cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.
Usage: cp <source file> <destination file>

:

cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.
Error: noname.cpp non-existent
file copy operation failed.

Run3

cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.

The arguments passed at the command line for the above three executions are as follows:
Runl: ¢cp

Run2: cp noname.exe name.exe
Run3: ¢p cp.cpp temp.Cpp

In main (), the statements

fstream infile; // source file
fstream outfile; // destination file

create two objects infile and outfile of the class £stream. They can be used either to read or
‘write to the disk. The statement
infile.open{ SourceFile, ios::in | ios::binary };
opens SourceFile in binary read mode and assigns the handle to the object infile. Whereas, the
statement
outfile.open(DestinationFile, ios::out | ios::binary);
opens DestinationFile in binary write mode and assigns the handle to the object outfile.
The statement
infile.read((char *) buff, BUFFSIZE);
reads the BUFFSIZE number of characters fromthe infile into the variable buf f,and the statement
outfile.write((char *) buff, infile.gcount());
writes the number of characters that are read (gcount () returns the count of the number of characters
1ead successfully) from the input file into the destination disk file.

702

Mastering C++

The statement

if(infile.gcount () < BUFFSIZE)

checks whether the number of characters read from the input file is less than the requested number. If .
yes, itindicates that the input file has no more characters to be read and terminates the reading process:
The statements

infile.close();
outfile.close();

close both the input and output files from further processing.

Review Questions

18.1 Whatis a file ? What are the steps involved in manipulating a file in a C++ program ?

18.2 Explain the various file stream classes needed for file manipulations ?

18.3 Describe different methods of opening a file. Write a program to open a file named "xxx.bio" and
write your name and other details into that file.

18.4 What are the different types of errors that might pop-up while processing files ?

18.5 Write an interactive program that accepts student's score and prints the result to a file.

18.6 Explain howwhile (input_file) expression detects the end of a file ?

18.7 What are file modes ? Describe various file mode options available ?

18.8 The file open modes ios: :app and ios: : ate set file pointer to end-of-file. What then, is
the difference between them ?

18.9 What are file pointers ? Describe get-pointers and put-pointers.

18.10 What are the differences between sequential and random files ?

18.11 What are the differences between ASCII and binary files ?

18.12 Write a program which copies the contents of one file to a new file by removing unnecessary
spaces between words.

18.13 Create a class called student. This class should have overloaded stream operator functions
to save or retrieve objects of the student class from a file. Write an interactive program to
manipulate objects of the student class with a file.

18.14 What are filter-utilities ? Write a program to display files on the screen page-wise. The output
must pause after every page and continue until carriage return (enter) key is pressed. Accept
name of a file to be processed from the command-line.

18.15 Explain how. memory buffers can be connected to stream objects.

18.16 Write an interactive program to maintain an employee database. It has to maintain information

such as employee id, name, qualification, designation, salary, etc. The user must be able to
access all details abcut a person either by entering employee name or by employee id. Note that
request for information may come randomly. It has to support an option for creating, updating,
and deleting a database (in addition to query).

19

Exception Handling

19.1 Introduction

The increase in complexity and size of the software systems and the increase in society’s dependence
on the computer systems have been accompanied by an increase in the costs associated with their
failure. The rising cost of failure in a computer system has stimulated interest in improving software
reliability.

Software does not degrade physically as a function of time or environmental stress. It was assumed
earlier that the concepts such as reliability or failure rate were not applicable to computer programs. Itis
true that a program that has once performed a given task as specified will continue to do so provided
that none of the following change: the input, the computing environment, or user requirements. How-
ever, it is not reasonable to expect a program to be constantly operating on the same input data, because
changes in computing environment and user requirements must be accommodated in most of the
applications. Past and current failure free operation cannot be taken as a dependable indication that
there will be no failure in the future.

The two main technigues for building reliable software (for dependable computing) are fault avoid-
ance and fault tolerance. Fault avoidance deals with the prevention of fault occurrence by construc-
tion. It emphasizes on techniques to be applied during system development to ensure that the running
system satisfies all reliability criteria apriori. It emphasizes that a sound way to deal with design faults
is to stop them from getting into the system in the first place. Fault tolerance deals with the method of
providing services complying with the specification inspite of faults having occurred (or occurring) by
redundancy. In C++, exception handling allows to build fault tolerant systems.

Fault tolerance approach attempts to increase reliability by designing the system to continue to
provide service inspite of the presence of faults. It begins with error detection. It must be possible to
detect the occurrence of a latent error before it leads to failure. Once an error has been detected, the goal
is error recovery. The goal of fault tolerant design is to improve dependability by enabling thre system
to perform its intended function in the presence of a given number of faults.

The Annotated C++ Reference Manual (ARM) by Ellis and Stroustrup states Exception handling
provides a way of transferring control and information to an unspecified caller that has expressed
willingness to handle exceptions of a given type. Exceptions of arbitrary types can be ‘thrown and
caught’ and the set of exceptions a function may throw can be specified. The termination model of
exception handling is provided. Exception handling can be used to support notions of error handling

and fault tolerant computing.

19.2 Error Handling

In traditional programming techniques, validation of input data and some runtime errors were handled
explicitly by the module in which the error occurred. Although, the users of these modules know how to

704 Mastering C++

cope with such errors, there is no means to detect the errors and handle them in the user’s code instead
of the library. The notion of exceptions is supported in C++ to deal with such problems. Here, exception
refers to unexpected condition in a program. The unusual conditions could be faults, causing an error
which in turn causes the program to fail. The error-handling mechanism of C++ is generally referred to
as exception handling. It provides a straightforward mechanism for adding reliable error handling
mechanism in a program.

Generally, exceptions are classified into synchronous and asynchronous exceptions. The excep-
tions which occur during the prograiz execution, due to some fault in the input-data or technique that is
not suitable to handle the current class of data, within the program, are known as synchronous excep-
tions. For instance, errors such as out-of-range, overflow, underflow, and so on belong to the class of
synchronous exceptions. The exceptions caused by events or faults unrelated (external) to the program
and beyond the control of program are called asynchronous exceptions. For instance, errors such as
keyboard interrupts, hardware malfunctions, disk failure, and so on belong to the class of asynchro-
nous exceptions. The proposed exception handling mechanism in C++ is designed to handle only
synchronous exceptions caused within a program.

Exception handling is an integral part of the ANSI/ISO C++ language standard. This standardization
ensures that the power of object-oriented design is supported throughout the program. An especially
strong feature of the standard is the availability of virtual functions and the use of objects to define
exceptions. Virtual functions guarantee a minimum runtime overhead—zero additional program over-
head if no exceptions are thrown. When used properly, C++ exception handling solves many problems
with alternative error handling techniques (such as returning error values from methods or using global
error handlers).

In accordance with ANSI specifications, recent implementation of most C++ compilers are support-
ing the exception-handling model. When an abnormal situation arises at runtime, the program should
terminate. However, throwing an exception allows the user to gather information at the throw point that
could be useful in diagnosing the causes which led to failure. An user can also specify in the exception
handler the actions to be taken before the program terminates. Only synchronous exceptions are handled
(the cause of failure is generated from within the program). An event such as Control-C (which is
generated from outside the program) is not considered to be an exception.

19.3 Exception Handling Model

When a program encounters an abnormal situation for which it is not designed, the user may transfer
control to some other part of the program that is designed to deal with the problem. This is done by
throwing an exception. The exception-handling mechanism uses three blocks: try, throw, and catch.
The relationship of these three exception handling constructs called the exception handling model is
shown in Figure 19.1.

The try-block must be followed immediately by a handler, which is a cazch block. If an exception is
thrown in the try-block, the program control is transferred to the appropriate exception handler. The
program should attempt to catch any exception that is thrown by any function. Failure to do so could
result in abnormal termination of the program. Though C++ allows an exception to be of any type, it is
useful to make exceptions as objects. The exception object is treated exactly the same way as other
normal objects. An exception carries information from the point where the exception is thrown to the
point where the exception is caught. This information allows the program user to know as to when the
program encounters an anomaly at runtime.

Chapter 19: Exception Handling 705

try Block

Perform operation which may throw or
invoke external function if needed

& Invoke function having throw block

v

throw Block

if(failure)
throw object:

2
0(820*
00 0

catch Block

catches all exceptions thrown from
within try block or by function
invoked within a try block

Figure 19.1: Exception handling model

19.4 Exception Handling Constructs

Exception handling mechanism transfers control and information from a point of exception ina program
to an exception handler associated with the try-block. An exception handler will be invoked only by a
thrown expression in the code executed by the handler’s try-block or by functions called from the
handler’s try-block. C++ offers the following three constructs for defining these blocks.

etry

e throw

e catch

The exception handler is indicated by the catch keyword. The handler must be used immediately
after the try-block. The keyword catch can also occur immediately after another catch. Each
handler will only evaluate an exception that matches, or can be converted to the type specified in its
argument list. Every exception thrown by the program must be caught and processed by the exception
handler. If the program fails to provide an exception handler for a thrown exception, the program will call
the terminate () function.

Exception handlers are evaluated in the order they are encountered. An exception is said to be
caught when its type matches the type in the catch statement. Once a type match is made, program

706 Mastering C++

control is transferred to the handler. The handler specifies what actions should be taken to deal with the
program anomaly. The stack-unwinding (catch-cleanup) operation is initiated immediately after pro-
cessing the catch block that matches with the exception type. In normal sequence (no exceptions are
raised) stack-unwinding is performed immediately after the try-block and program execution continues.
(A gotc statement can be used to transfer program control out of a handler but such a statement can
never be used to enter a handler.) After the handler has been executed, the program continues its
execution from the point after the last handler for the current try-block and no other handlers are
evaluated for the current exception.

throw Construct

The keyword throw is used to raise an exception when an error is generated in the computation. The
throw-expression initializes a temporary object of the type T (to match the type of argumentarg) used
in throw (T arg). The syntax of the throw construct is shown in Figure 19.2.

' Named object,nameless object,
Keyword or by default, nothing
throw T;

Figure 19.2: Syntax of throw construct

catch Construct

The exception handler is indicated by the catch keyword. It must be used immediately after the
statements marked by the try keyword. The catch handler can also occur immediately after another
catch. Each handler will only evaluate an exception that matches, or can be converted to the type
specified in its argument list. The syntax of the catch construct is shown in Figure 19.3.

K 4 object name, or nameless object
cywor (same as throw argument) -
catch (T)
{
// actions for handling an exception
}

Figure 19.3: Syntax of catch construct

try Construct

The try keyword defines a boundary within which an exception can occur. A block of code in which an
exception can occur must be prefixed by the keyword try. Following the try keyword is a block of
code enclosed by braces. This indicates that the program is prepared to test for the existence of
exceptions. If an exception occurs, the program flow is interrupted. The syntax of the t ry construct is
shown in Figure 19.4.

Chapter 19: Exception Handling 707

Keyword

try

// code raising exception or referring to
// a function raising exception

}
catch(type_idl)
{

// actions for handling an exception

}

catch(type_idn)

// action for handling an execption

Figure 19.4: Syntax of try construct

A block of code in which an exception can occur must be prefixed by the keyword try. The try
keyword is followed by a block of code enclosed within braces. It indicates that the program is prepared
for testing the existence of exceptions. If an exception occurs, the program flow is interrupted and the
exception handler is invoked.

The mechanism suggests that error handling code must perform the following tasks.

1. Detect the problem causing exception (Hit the exception)
2. Inform that an error has occurred (Throw the exception)
3. Receive the error information (Catch the exception)

4. Take corrective actions (Handle the exceptions)

Exception handling code resembles the following pattern:

my_function()

{
1f(.o.peration_fail)
throw Objectl; // throw-point
.
é'

ry
{ // begin of try block
my_function(); // call the function my_function
if(overflow)
throw Object2; // throw-point

} // end of try block

708 Mastering C++

catch(Objectl)

The following sequence of steps are performed when an exception is raised:

o The program searches for a matching handler.
« If a handler is found, the stack is unwound to that point.
+ Program control is transferred to the handler.

+ If no handler is found, the program will invoke the terminate () function (explained later). If no
exceptions are thrown, the program executes in the normal fashion.

The program divzero. cpp illustrates the mechanism for detecting errors, raising exceptions, and
handling such exceptions. It has the class number to store an integer number and the member function
read() to read a number from the console and the member function div() to perform division
operations. It raises exception if an attempt is made to perform divide-by-zero operation. It has an
empty class named DIVIDE used as the throw's expression-id.

// dWZeﬂchp:Divide Operation Validation, (divide-by-zero)
#include <iostream.h>
class number
{
private:
int num;
public: .
void read() // read number from keyboard
{
cin >> num;
}
class DIVIDE {}; // abstract class used in exceptions
int div(number num2)
{

if(num2.num == 0) // check for zero division if yes
throw DIVIDE() ; /! raise exception
else

return num / num2.num; // compute and return the result

Chapter 19: Exception Handling 709

int main()
{

number numl, num2;

int result;

cout << "Enter Number 1: ";

numl.read() ;

cout << "Enter Number 2: *;

num? .read{) ;

// statements must be enclosed in try block if you intend to handle

// exceptions raised by them

try

{
cout << "trying division operation...";
result = numl.div(num2);
cout << "succeeded" << endl;

}

catch(number: :DIVIDE) // exception handler block

{
// actions taken in response to exception
cout << "failed* << endl;
cout << "Exception: Divide-By-Zero";
return 1;

}

// no exceptions, display result

cout << "numl/num2 = " << result;

return 0;

}

Run1

Enter Number 1: 10

Enter Number 2: 2

trying division operation...succeeded
numl/num2 = 5

Run2

Enter Number 1: 10

Enter Number 2: Q

trying division operation...failed
Exception: Divide-By-Zero

In main (), the try-block

try

{ ...; result = numl.div(num2); ...; }
invokes the member functiondiv () to perform the division operation. If any attempt is made to divide
by zero, the following statement indiv():

if(num2.n == 0) // check for zero division if yes

throw DIVIDE() ; // raise exception

detects the same and raises the exception by passing a nameless object of type class DIVIDE. All the
statements following the one which raised the exception are skipped (see output of Run2 above) and
search for an exception handler begins. The runtime system searches catch-block to detect the handler.

710 Mastering C++

The block of code inmain () following the try-block:

catch(number: :DIVIDE)

{
cout << "Exception: Divide-By-Zero*;
return 1;

}
will catch the exception raised due to the call to the function in the try-block and executes its body (see

Figure 19.5). If no exception is raised, the exception handliag catch-block will not be executed and
execution proceeds to the next statemeni, which displays the result.

Instance of the class number

Client program

(T~

number num1, num2;

fnum1i.iead();
tnum2.read();

try {
| result=num1.div(num2);

void read();

private:

}
Ly catch(DIVIDE)
{

int div(number num2) {

try {
if(num2.num ==

.-

/\)

Figure 19.5: Exception handling in the number class

Array Reference Out of Bound

The program arrbound. cpp illustrates the mechanism of validating array element references. If any
attempt is made to refer to an element whose index is beyond the array size, an evcepiion is raised.

/ / arrbound.cpp: Array Reference Bound Validation
#include <iostream.h>
const int ARR_SIZE = 10; // maximum array size
class array
{
private:
int arr{ARR_SIZE};
public:
class RANGE (}; // Range abstract class
int & operator([](int i)
{
if(1 <0 || 1 >= ARR_SIZE)
throw RANGE(); // throw abstract object

Chapter 19: Exception Handling 711

return arr([i); // valid reference
}
b
void main ()
{
array a; // create array
cout << "Maximum array size allowed = " << ARR_SIZE << endl;
try
{
cout << "Trying to refer a[l)..."*;
afl] = 10;
cout << "succeeded" << endl;
cout << "Trying to refer a[l5])...";
a[l5) = 10; // refer 15th element from array a, causes exception
cout << "succeeded" << endl;
}
catch(array::RANGE) // true if throw is executed in try scope
{
// action for exception
cout << "Out of Range in Array Reference®;

}
}
Run
Maximum array size allowed = 10
Trying to refer a[l]...succeeded

Trying to refer a[15]...0ut of Range in Array Reference

The statement in try-block of main ():

a(l] = 10;
updates the first element of the array. However, another statement
a[15]) = 10;

in the same block, tries to update the fifteenth element. It leads to an exception since the array size is
only 10. This exception is caught by the.statement

catch(array: :RANGE)
which issues a warning message on the standard output.

19.5 Handler Throwing the Same Exception Again

There are several good reasons to allow an exception to be implicitly propagated from'a function (callee)
to its caller. Of course, it follows the democracy principle: a client (caller) is the better candidate to
decide what actions are to be taken when something goes wrong. If a function does not want to take any
corrective action in response to an exception, it can pass the same to the caller of a function. The
throw construct without an explicit exception parameter raises the previous exception. An exception
must currently exist otherwise, terminate () is invoked. The program pass .cpp illustrates the
method of passing the same exception to the caller if the current handler is unable to handle it.

712 Mastering C++

// pass.cpp: passing all exceptions that occur in parent to child
#include <iostream.h>
#include <process.h>
const int ARR_SIZE = 10; // maximum array size
class array
{
private:
int arr[ARR_SIZE];
public:
array();
class RANGE (}; // Range abstract class
int & operator[](int i)
{
if(i <0 || i >= ARR_SIZE)

throw RANGE(); // throw abstract object
return arr(i]; // valid reference
}
}i
array::array()
{
for(int 1 = 0; i < ARR_SIZE; i++)
arr([i] = i;
}

// read an element from the array, if any exception pass the same to caller
int read(array & a, int index)

{
int element;
try
{
element = a[index];
}
catch(array::RANGE) // catch the exceptions raised in class
{
cout << endl<< "Parent passing exception to child to handle"<<endl;
throw; // pass all exceptions to the caller
}
return element;
}

void main()
{
array a; // create array object
int index, element;
cout << "Maximum vector size allowed = " << ARR.SIZE << endl;
while(1)
{
cout << “Enter element to referenced: *;
cin >> index;
try
{
cout << "Trying to access object array 'a' for index = "<<index;
element = read(a, index);

Chapter 19: Exception Handling

cout << endl << "Element in Array = " << element << ehdl;

}

catch(array::RANGE) // true if throw is executed in try scope

{

// action for exception
cout << "Child: Out of Range in Array Reference";

exit(1

}
Run

)

Maximum vector size allowed = 10

Enter element to
Trying to access
Element in Array
Enter element to
Trying to access
Element in Array
T“nter element to
Trying to access

referenced: 1

object array ‘a’ for index
=1

referenced: S

object array ‘a’ for index
=5

referenced: 10

object array ‘a’ for index

Parent passing exception to child to handle
child: out of Range in Array Reference

10

73

The catch-block in the function read () does not take any corrective action for the exception
array: : RANGE. It throws the exception to the caller and the catch-block in main() terminates the
program after displaying the message:

child: out of Range in Array Reference

on the standard output device.

19.6 List of Exceptions

Raising or catching an exception affects the way a function relates to other functions. C++ language
makes it possible for the user to specify a list of exceptions that a function can throw. This exception
specification can be used as a suffix to the function declaration specifying the list of exceptions that a
function may directly or indirectly throw as a part of a function declaration. The syntax for exception
specification is shown in Figure 19.6.

Function definition:
Eg: int func (arguments)

N

List of exceptions that can,

be raised

/

FunctionSpecification throw (type idl, type 1id2,...)

{

// Function body raising exceptions if error occurs

}

Figure 19.6: Syntax of specifying a list of exceptions

714 Mastering C++

The exception-list, which is the function suffix is not considered to be a part of the specification of
a function. Consequently, a pointer to a function is not affected by the function’s exception specifica-
tion. Such a pointer checks only the function’s return value and argument types. Therefore, the follow-
ing is legal: :

void fl(void) throw()}; // cannot throw exceptions
void f2(void) throw (BETA); // can throw BETA objects
int func!) throw(X, Y) // can throw only X and Y exceptions

...
{

3

C++ allows 1o have pointers 1o a function raising exception, for instance,

void (* fptr) (); // Pointer to a function returning void
fptr = £1;
fptr = £2;

However, extreme care should be taken when overriding virtual functions; the exception specification is
not considered as a part of the function type, it is possible to violate the program design. If an exception
which is not listed in the exception specification is thrown, the function unexpected () will be called
(discussed later in this chapter).

In the following example, the derived class BETA: : vfunc is defined so that it should not throw
any exceptions—a departure from the original function declaration.
class ALPHA
{
public:
struct ALPHA_ERR (};
virtual void vfunc(void) throw (ALPHA_ERR) {(};
// Exception specification
}i
class BETA : public ALPHA -
{
void vfunc(void) throw() {}; // Exception specification is changed
Y:

The following are examples of functions with exception specifications.

void f1(); // The function can throw any exception
void £2() throw(); // Should not throw any exceptions
void £3() throw(A, B*); // Can throw exceptions publicly derived

// from A,or a pointer to publicly derived B

Raising an Unspecified Exception

The definition and all declarations of such a function must have an exception specification containing
the same set of type-ids. If a function throws an exception not listed in its specification, the program will
call the function unexpected (). This is a runtime issue and it will not be flagged at compile time.
Therefore, care must be taken to handle any exception which can be thrown by statements/functions
invoked within a function.

void my_funcl() throw (A, B)

{
// Body of function.

Chapter 19: Exception Handling 715

This example specifies a list of exceptions that my_funcl () can throw. No other exception will
propagate out of my_func1. If an exception other than A or B is generated within my_funcl. it is
considered to be an unexpected exception and program control will be transferred to the predefined
unexpected function. The program signl.cpp illustrates raising of an exception other than that
specified in the exception list..

// signl.cpp:determine whether the input is +ve or -ve through exceptions
#include <iostream.h>
class positive (};
class negative {};
class zero {};
// this function can raise only positive and negative exceptions
void what_sign(int num) throw(positive, negative)
{
if(num > 0)
throw positive();
else
if(num < 0) -
throw negative();
else
throw zero(): // unspecified exception
}
void main()
{
int num;
cout << "Enter any number: ";
cin >> num;

try
(
what_sign(num);
}
catch(positive)
{ cout << "+ve Exception"; }
catch(negative)
{ cout << “-ve Exception"; }

catch(zero)
{ cout << "0 Exception"; }

Run1
Enter any number: 10
+ve Exception

Run2
Enter any number: =10
-ve Exception

Bun3

Enter any number: Q
Abnormal program termination

716 Mastering C++

The prototype of the function what_sign () is specified as
void what_sign(int num) throw(positive, negative)
It indicates that, this function can raise exceptions positive and negative, but the statement
throw zero(); // unspecified exception

raises the exception zero, which is not in the exception list of this function. It calls the default excep-
tion handler, which aborts the execution of the program (see Run3) although there exists an explicit
exception handler in the caller of this function.

Exceptions in a No-Exception Function

The following function and exception specification indicates that it will not generate any exception:
void my_func2 () tnrow ()

{
// Body of this function.
}

If any statement in the body of my_func2 () throws an exception, the control is transferred to library
functionabort (), which terminates the program by issuing an error message. The program sign2 . cpp
illustrates the effect of raising an exception in a function which is not supposed to raise any exception.

// sign2.cpp: determine whether the input is positive or negative
#include <iostream.h>
class zero {};
// this function cannot raise exception
void what_sign(int num) throw()
{
if(num > 0)
cout << "+ve number";
else
if(num < 0)
cout << "-ve number"*;
else
throw zero(); // unspecified exception
}
void main()
{
int num;
cout << "Enter any number: *;
cin >> num;
try
{
what_sign(num);
}
catch(zero)
{ cout << "0 Exception"; }

}

Run1

Enter any number: 10
+ve number

Chapter 19: Exception Handling mn?

Run2

Enter any number: -10
-ve number

Bun3

Enter any number: 0
Abnormal program termination
The prototype of the function what_sign():
void what_sign(int num) throw()
indicates that it does not raise any exception, but the statement
throw zero(); // unspecified exception

raises the exception. It invokes the default excebtion handler which aborts the execution of the program
(see Run3) though there exists an explicit exception handler in the caller of this function.

19.7 Catch All Exceptions

C++ supports a feature to catch all the exceptions raised in the try-block. The syntax of the catch
construct to handle all the exceptions raised in the try block is shown in Figure 19.7.

three dots: indicate catch
all exceptions

vV

catch (. . .)
{

// actions for handling an exception

)
Figure 19.7: Syntax of catch all construct

The three dots in the catch (. . .) indicates that it catches all types of exceptions raised ‘n its
preceding try-block. The program catalll.cpp illustrates the mechanism of handling all the excep-
tions raised by a single handler.

// catalll.epp:All exceptions are caught
#include <iostream.h>
class excep2 {}:
void main()
{
try
{
cout << *"Throwing uncaught exception® << endl;
.throw excep2();
}
catch(...) // catch all the exceptions
{
// action for exception
cout << "Caught all exceptions® << endl;

718 Mastering C++

}
cout << "I am displayed";
}

Run

Throwing uncaught exception
Caught all exceptions

I am displayed

The statement in the try-block of main ():
throw excep2 () ;
raises the exception excep2 (). It is caught by the statement,
catch(... f // catch all the exceptions

The program having multiple catch-all exceptions is illustrated in catall2.cpp. It has multiple
functions calling one another.

/ / catall2.cpp: making exception-specifications and handle all exceptions
#include <iostream.h>
class ALPHA({}; // Exception declaration
ALPHA _a; // object of ALPHA
void £3(void) throw (ALPHA)
(
// Will throw only type-alpha objects
cout << "f3() was called" << endl;
throw(_a); // throw exception explicit obje "t
) [
void f2(void) throw()

{
// should not throw exceptions

try

{ // wrap all code in a try-block
cout << "f2() was called" << endl;
£3();

}

catch (...)

{ // trap all exceptions

cout << "f2() has elements with exceptions!" << endl;
}
}
int main()
{
try
{
£20); .
return 0; // £f2 succeeds, terminate
) ,
Catch(...)
{

cout << "Need more handlers!";

Chapter 19: Exception Handling 719

cout << endl << “"continued after handling exceptions*;
return 1;

}

Run

f2() was called
f3() was called
f2() has elements with exceptions!

In £3 (), the statement

throw(_a); // throw exception explicit object

throws the exception using named object _a, which is the instance of the class ALPHA. Itis caught by
the handler in the caller function £2 () . There is a handler to catch all exceptions in main (), butis not
activated; all the exceptions are caught in £2 () and no exceptions are passed to its caller.

19.8 Exceptions in Constructors and Destructors

When an exception is thrown, the copy constructor is invoked as a part of the exception handling. The
copy constructor is used to initialize a temporary object at the throw point. Other copies may be
generated by the program. When the program flow is interrupted by :n exception, destructors are
invoked for all automatic objects which were constructed from the entry point of the try-block. If the
exception was thrown during construction of some object, destructors will be called only for those
objects which were fully constructed. For example, if an array of objects was under construction when
an exception was thrown, destructors will be called only for the array elements which were fully con-
structed. o

As a building block of design patterns for proper handling of exceptions, there is a need for secure
operations that allow transfer of resource responsibilities without throwing exceptions. In C++, itis a
bad idea to leave a destructor by throwing an exception. This is because a destructor may be invoked
during runtime stack unwinding when another exception was thrown; a second throw that aborts one of
these destructors will immediately invoke terminate (), which aborts the program by default. In
other words, all destructors in a C++ program should have an empty specification throw (). This is
called secure operations.

Those objects which are created from a try-block to any statement raising an exception serve no
purpose if any exception is raised. Hence, they must be destroyed by releasing the allocated resources.
The process of calling destructor for automatic objects constructed on the path from a try-block to a
thrown expression is called stack unwinding. The program twoexcep . cpp illustrates the concept of
having multiple types of exceptions in a program.

/ / twoexcep.cpp: Array Creation and Reference Bound Validation
#include <iostream.h>
const int ARR_SIZE = 10; // maximum array size, that can be allocated
class array
{
private:
int *arr; // pointer to array
int size; // maximum array size

720 Mastering C++

public:
class SIZE {(}; // Size abstract class
class RANGE (}; // Range abstract class
array(int SizeRequest) // constructor
{
if(SizeRequest < 0 || SizeRequest > ARR_SIZE)
throw SIZE();
// allocate resources
size = SizeRequest;
arr = new int[size];
}
~array () // destructor
{
// deallocate resources
delete arr;
}
int & operator[](int i) // subscript operator overloading
{
if(i <0 |] 1> size)
throw RANGE(); // throw abstract object
return arr{i); 7/ valid reference
}
};
void main ()
{
cout << "Maximum array size allowed = " << ARR_SIZE << endl;
try
{
cout << "Trying to create object al(5)...";
array al(5); // create array
cout << "*succeeded" << endl;
cout << "Trying to refer al[5]...";
al([5) = 10;
cout << "succeeded.."; .
cout << "al[5] = " << al[5] << endl;

cout << "Trying to refer al[l5]...";
al[l5] = 10; // causes exception
cout << "“succeeded" << endl;
} .
catch(array::SIZE)
{
// action for exception
cout << "..Size exceeds allowable Limit" << endl;
}

catch(array::RANGE) // true if throw is executed in try scope
{

// action for exception

cout << *..Array Reference Out of Range" << endl;

Chapter 19: Exception Handling 721

// Array creation unsuccessful, Request > ARR_SIZE

try

{
cout << "Trying to create object a2(15)...";
array a2(15); // create array, causes exception
cout << "succeeded® << endl;

a2(3] = 3; // valid access
}
catch(array::SIZE)
{
// action for exception
cout << "....Size exceeds allowable Limit" << endl;
} .

catch(array::RANGE) // true if throw is executed in try scope
{

// action for exception

cout << "....Array Reference Out of Range" << endl;

)
Aun

Maximum array size allowed = 10

Trying to create object al(5)...succeeded

Trying to refer al(5]...succeeded. .al[5] = 10

Trying to refer al[15]..... Array Reference Out of Range

Trying to create object a2(15)....... Size exceeds allowable Limit

The one-argument constructor of the class array,
array(int SizeRequest) // constructor
throws an exception,
throw SIZE() ;
if an attempt is made to create an array beyond the allowable range. The statement
if(i <0 || i> size)
throw RANGE(); // throw abstract object

throws an exception if an attempt is made to access an array element by using invalid index (lower than
minimum bound or higher than the maximum bound).

19.9 Handling Uncaught Exceptions

The uncaught exception handling mechanism relies on two library functions, terminate () and
unexpected (), for coping with exceptions unhandled explicitly. C++ supports the following special
functions to handle uncaught exceptions in a systematic manner:

e terminate()

e set_terminate()

¢ unexpected()

o set_unexpected()

terminate()
The function terminate () is invoked when an exception is raised and the handler is not found. The

722 Mastering C++

default action for terminate is to invoke abort () . Such a default action causes immediate termina-
tion of the program execution. The program uncaught . cpp illustrates the series of events that can
occur when the program encounters an exception for which no handler can be found.

// uncaught.cpp: Uncaught exception invokes abort() automatically
#include <iostream.h>
class excepl (};
class excep2 {};
void main ()
{
try
({
cout << "Throwing uncaught exception" << endl;
throw excep2() ;
}
catch(excepl) // true if throw excepl is executed in try scope
{
// action for exception
cout << "Exception 1";
}
// excep2 is not caught hence, program aborts
// here without proceeding further
cout << "I am not displayed";

}

Run

Throwing uncaught exception
Abnormal program termination

The statement in main () ’s try-block:
throw excep2 () ;
raises an exception excep2 for which no handler exists. Here, terminate () comes to rescue this
condition. When terminate () function is called, the program aborts by displaying the message.
Abnormal program termination
and does not proceed further.

The programmer can modify the way the program will terminate when an exception is generated. The
terminate () function can call user defined function instead of abort () if the user defined func-
tion is registered with set_terminate () function.

set_terminate()

The set_terminate function allows the user to install a function that defines the program’s actions
to be taken to terminate the program when a handler for the exception cannot be found. The actions are
defined in t_func, which is declared to be a function of type terminate_function. A termi-
nate_function type defined in except .h, is a function that takes no arguments, and returns nothing.
By default, an exception for which no handler can be found results in the program calling the termi -
nate function. This will normally result in a call to abort function. The program then ends with the
message, Abnormal program termination. If some function other than abort () is to be invoked by

Chapter 19: Exception Handling 723

the terminate (), the user should define t_func function. This t_func function can be installed
by set_terminate as the termination function. The installation of t_func allows the user to
implement any action that is not taken by abort (). The syntax of the set_terminate function
declared in the header file except .h is as follows:

typedef void (*terminate_function) () ;

terminate_function set_terminate(terminate_function t_£func);
// Define your termination scheme ’
terminate_function my_terminate(void)

{
// Take actions before terminating
// should not throw exceptions
exit(1l); // must end somehow

}

// Register your termination function
set_terminate(my_terminate);

The program myhand. cpp handles uncaught exceptions with the user specified terminate function.

// myhand.cpp:All exceptions are not caught, executes MyTerminate ()
#include <iostream.h>

#include <except.h>

Class excepl (};

class excep2 {};

void MyTerminate ()

{
cout << "My Terminate is invoked";
exit(1);
}
void main()
{
set_terminate(MyTerminate); // sets to our own terminate function
try
{
cout << "Throwing uncaught exception\n";
throw excep2();
}
catch(excepl)
{
// action for exception
cout << "Caught exception, excepli\n*®;
}
// program abort (} here; MyTerminate() will be called
cout << "I am not displayed";
}
Bun

Throwing uncaught exception
My Terminate is invoked

724 Mastering C++

In main (), the statement
set_terminate(MyTerminate);
sets the function MyTerminate as a termination function to be invoked when there exists no excep-
tion handler for the exception raised. The statement in the try-block ,

throw excep2 () ;

raises the exception excep2, which is uncaught. The system automatically invokes the function
MyTerminate as a part of unhandled exceptions.

unexpected()

The unexpected function is called when a function throws an exception not listed in its exception
specification. The program calls unexpected () which calls any user-defined function registered by
set_unexpected. If no function is registered with set_unexpected, the unexpected ()
function then invokes the terminate () function. The prototype of the unexpected () call is

void unexpected();

The function unexpected returns nothing (void) but it can throw an exception through the execu-
tion of a function registered by the set_unexpected function.

// sign3.cpp: unexpected exceptions
#include <iostream.h>
#include <process.h> // has prototype for exit ()
#include <except.h>
class zero {};
// this function cannot raise exception
void what_sign(int num) throw()
{
if(num > 0)
cout << "+ve number";
else
if(num < 0)
cout << "-ve number";
else
throw zero(); // unspecified exception
}
void main()
{
int num;
cout << "Enter any number: *;
cin >> num;
try
{
what_sign(num);
}
catch(...)
{
cout << “catch all exceptions*;
}

cout << endl << "end of main()";

Chapter 19: Exception Handling 725

Run1

Enter any number: 10
+ve number

end of main{()

Run2

Enter any number: -3
-ve number
end of main()

Bun3

Enter any number: Q
Abnormal program termination

The function
void what_sign(int num) throw()
raises an unspecified exception
throw zero(); // unspecified exception
leading to the invbcation of the unexpected() function automatically (see Run3).

set_unexpected()

The function set_unexpected() lets the user to install a function that defines the program’s
actions to be taken when a function throws an exception not listed in its exception specification. The
actions are defined in unexpected_func () library function. By default, an unexpected exception
causes unexpected () to be called, which in turn calls unexpected_func.

Program behavior when a function is registered with set_unexpected():

// Define your unexpected handler
unexpected_function my_unexpected(void)
{

// Define actions to take

// possibly make adjustments

}
// register your handler
set_unexpected(my_unexpected) ;

The program sign4 . cpp illustrates the mechanism of defining the user defined unexpected -ex-
ception handler. The user defined unexpected_func must not return to its caller. An attempt to
return to the caller results in'an undefined program behavior. The unexpected_func () can invoke
abort (),exit(),orterminate () functions.

7/ / signd.cpp: unexpected exceptions through user-defined function.
#include <iostream.h>

#include <process.h> // has prototype for exit()

#include <except.h>

class zero {}; // empty class
// this function cannot raise exception

726 Mastering C++

void What_sign(int num) throw()
{
if(num > 0)
cout << "+ve number";
else
if(num < 0)
cout << "-ve number";
else
throw zero(); // unspecified exception
}
// this is automatically called whenever an unexpected exception occurs
void MyUnexpected ()
{

cout << "My unexpected handler is invoked";

exit(1);
}
void main()
{
int num;
cout << "Enter any number: *;
cin >> num;
set_unexpected(MyUnexpected); // us=r defined handler
try
{
what_sign(num);
}
catch(...) // catch all exceptions
{
cout << "catch all exceptions*;
}
cout << endl << *end of main()";
}
Runi

Enter any number: 10
+ve number
end of main{()

Run2

Enter any number: -3
-ve number

end of main(;

Run3

Enter any number: 0
My unexpected handler is invoked

The function what_sign () raises an unspecified exception,
throw zero(); // unspecified exception
leading to the invocation of the user defined MyUnexpected () automatically (see Kun3).

Chapter 19: Exception Handling 7

19.10 Exceptions in Operator Overloaded Functions

The program interact .cpp illustrates the mechanism for handling exceptions in the vector class,
while creating its objects and accessing its elements either for aread or write operation. It overloads the
operator [] to simulate the array operations on the user defined data type.

/ / interact.cpp: interactive program raises exception for improper data
#include <iostream.h>

#include <process.h>

const int VEC_SIZE = 10; // maximum vector size, that can be allocated
class vector

{

private:
int *vec; // pointer to array for vector elements
int size; // maximum vector size
public:
class SIZE (}; // Size abstract class
class RANGE {}; // Range abstract class
vector(int SizeRequest)
{
if(sizeRequest <= 0 || SizeRequest > VEC_SIZE)

throw SIZE();
size = SizeRequest;
vec = new int[size];

}
~vector () // destructor
{
delete vec;
}

// subscripted operator overloading
int & operator[](int i);

};

// subscripted operator overloading

int & vector::operator[](int i)

if(i< 0 || i >= size)
throw RANGE(); // throw abstract object
return vecfil; // valid reference
}
void main()
{
int size, data, index;
cout << "Maximum vectocr size allowed = " << VEC_SIZE << endl;
try
{
cout << "What is the size of vector you want to create: ";
cin >> size;
cout << "Trying to create object vector vl of size = " << size;
vector vl(size); // create vector
cout << "...succeeded" << endl;

728 Mastering C++

cout << "Which vector element you want to access (index): *;
cin >> index;
cout << "What is the new value for vl " << index << ™ J: *;
cin >> data;
cout << "Trying to modify al[" << index << " }..."
vl{index] = data;
cout << “succeeded" << endl;
cout << "New Value of al[" << index << *].= " << vl[index];
}
catch(vector::SIZE)
{
// action for exception
cout << *failed" << endl;
cout << "Vector creation size exceeds allowable limit";
exit(1);
}
catch(vector::RANGE) // true if throw is executed in try scope
{
// action for exception
cout << *..,.failed" << endl;
cout << "Vector reference out-of-range";
exit(1);

}
Runi

Maximum vector size allowed = 10

What is the size of vector you want to create: 5

Trying to create object vector vl of size = 5...succeeded
Which vector element you want to access (index): 2

What is the new value for vi1[2]: 2

Trying to modify al[2]...succeeded

New Value of alf{ 2] = 7

Run2

Maximum vector size allowed = 10

What is the size of vector you want to create: 5§

Trying to create object vector vl of size = 5...succeeded
Which vector element you want to access (index): 10

What is the new value for v1[10]: 2

Trying to modify al[10]...failed
Vector reference out-of-range
Bun3

Maximum vector size allowed = 10

What is the size of vector you want to create: 15
Trying to create object vector vl of size = 15
Vector creation size exceeds allowable limit

Note:
RunlI: All operations are valid, no exception is generated

Chapter 19: Exception Handling 729

Run2: Invalid vector reference, exception generated
Run3: Invalid size for vector creation, exception generated

In Run2, an attempt is made to refer to the 1 1% element (but index is 10) of the vector whose size is 10.
It raises an exception, which is caught by the statement,
catch(vector: :RANGE)

In Run3, an attempt is made to create the vector of size 15, but the allowable limit is 10 as restricted by
the value of VEC_SIZE constant. The statement

catch{ vector::SIZE)
catches the exception raised while creating objects of the vector class.

19.11 Exceptions in Inheritance Tree _

The mechanism of handling exceptions in the base and derived classes is illustrated in virtual.cpp.

// virtual.cpp: Binding a pointer to base class' object to base or derived
// objects at runtime and invoking respective members if they are virtual
#include <iostream.h>
#include <process.h>
// empty class for Father and Son inheritance
class WRONG_AGE
(};
class Father
{
protected:
int f_age;
public:
Father(int n)
{
if(n<0)
throw WRONG_AGE 0
f_age = n;
}
virtual. int GetAge (void)
(
return f_age;
}
}i
// Son inherits all the properties of father
class Son : public Father
(
protected:
int s_age;
public:
Son(int n, int m) :Father (n)
{
// if son's age is greater or equal to father, throw exception
if(m>=n)
throw WRONG_AGE () ;

730 Mastering C++

}i

s_age = m;

}

virtual int GetAge(void)
{

return s_age;

void main{()

{

}

int father_age;
int son_age;
Father *basep; // pointer to father objects
cout << "Enter Age of Father: ":
cin >> father_age;
try
{
basep = new Father(father_age); // pointer to father
}
catch(WRONG_AGE)
{
cout << "Error: Father's Age is < 0";
exit(1);
}
cout << "Father’s Age: *;
cout << basep->GetAge() << endl; // calls father::GetAge
delete basep; // remove Father class object
cout << "Enter Age of Son: *;
cin >> son_age;
try
{
basep = new Son(father_age, son_age); // pointer to son
}
catch (WRONG_AGE)
{
cout << "Error: Father age cannot be less than son age!!!";
exit(1);
}
cout << "Son's Age: *;
cout << basep->GetAge() << endl; // calls son::GetAge()
delete basep; // remove Son class object

Buni

Enter Age of Father: 45
Father's Age: 45

Enter Age of Son: 20
Son‘s Age: 20

Run2

Enter Age of rather: 20
Father’'s Age: 20

Chapter 19: Exception Handling 731

Enter Age of Son: 45
Error: Father age cannot be less than son age!!!

Run

Enter Age of Father: -2
Error: Father's Age is < 0

The first try-block in themain () will check for the validity of the father’s age. As in Run3.if the
fathers’ age is less than the zero, the exception WRONG_AGE is raised.

The second try-block in the main () will check for the validity of son’s age in accordance with
father’s age. As in Run2, if son’s age is greater than the age of father, the exception WRONG_AGE is
raised.

19.12 Exceptions in Class Templates

The program matrix.cpp illustrates exception handling mechanism along with other features of
OOPs such as class templates, operator overloading including friend functions, binary operators, as-
signment through object copy, etc. The specification of the template class matrix with exceptions is

similar to that without exceptions, but, errors are handled using exceptions instead of returning an error
code as a function return value.

// matrix.cpp: Matrix manipulation class template and exception handling
#include <iostream.h>
#include <process.h>
const int TRUE = 1;
const int FALSE = 0;
// empty class for matrix exception
class MatError
()
// template matrix class
template <class T>
class matrix
{
private:
int MaxRow; // number of rows
int MaxCol; // number of columns
T MatPtr([5](5]): // if T is int, int MatrPtr[5]1(5];
public:
matrixi()
{
MaxRow = 0; MaxCol = 0;
}
matrix::matrix{ int row, int col)
{

MaxRow
MaxCol

YOwW;
col;

J

friend istream & operator >> (istream & cin, matrix <T> &dm);
friend ostream & operator << (ostream & cout, matrix <T> &sm);
matrix <T> operator + (matrix <T> b);

732 ‘Mastering C++

matrix <T> operator - (matrix <T> b)
matrix <T> operator * (matrix <T> b);
void operator = (matrix <T> b);
int operator == (matrix <T> b)

};

template <class T>

matrix<T> matrix<T>::operator + (matrix <T> b))

{
matrix <T> c(MaxRow, MaxCol);
int i, j;
if(MaxRow != b.MaxRow || MaxCol != b.MaxCol)
throw MatError () ;
for(i = 0; i < MaxRow; i++)
for(j = 0; j < MaxCol; j++)
c.MatPtr[i] [j] = MatPtr(il([j] + b.MatbPtr[i}([j];
return(¢);
}

‘template <class T>
matrix <T> matrix<T>::operator - (matrix <T> b)
{
matrix <T> c(MaxRow, MaxCol);
int i, j;
if(MaxRow != b.MaxRow || MaxCol != b.MaxCol)
throw MatError () ;
for(i = 0; i < MaxRow; i++)
for(j = 0; j < MaxCol; j++)
¢.MatPtr(i] (j] = MatPtr[i][j] - b.MatPtr[il(j];:
return{ ¢);
}
template <class T>
matrix <T> matrix<T>::operator * (matrix <T> b)
{
matrix <T> c(MaxRow, b.MaxCol);
int 1, j, k;
if(MaxCol != b.MaxRow)
throw MatError() ;
for(i = 0; i < c.MaxRow; i++)
for(j = 0; j < ¢.MaxCol; j++)
{
c.MatPtr[i] [j] = 0;
for(k = 0; k < MaxCol; k++)
c.MatPtr({i] [j] += MatPtr{i][k] * b.MatPtr(k]([j]:

}
return(¢);
}
template <class T>
int matrix<T>::operator == (matrix <T> b)

(
int i, j;
if (MaxRow != b.MaxRow || MaxCol != b.MaxCol)
return(FALSE);

Chapter 19: Exception Handling 733

for(i = 0; i < MaxRow; i++)
{
for(j = 0; j < MaxCol; j++)
if(MatPtr[i][j] '= b.MatPtr([i][j])
return(FALSE);

}
return(TRUE) ;

}
// function invoked when statement of type matrix a = matrix b is used
template <class T>
void matrix<T>::operator = (matrix <T> b)
{

int i, J;

MaxRow = b.MaxRow;

MaxCol b.MaxCol;

for(i = 0; i < MaxRow; i++)

for(j = 0; j < MaxCol; j++)
MatPtr(il(j] = b.MatPtr([i]([j};

}
template <class T>
istream & operator >> (istream & cin, matrix <T> &dm)

{
int i, 3j;
cout << "How many rows ? “;
cin >> dm.MaxRow;
cout << "How many columns ? ";
cin >> dm.MaxCol;
for(i = 0; i < dm.MaxRow; i++)
for(j = 0; j < dm.MaxCol; j++)
{
cout << "Matrix{" << i << "," << j << *] =2 ";
cin >> dm.MatPtr[il[j];
}
return(cin);
}

template <class T>
ostream &operator << (ostream & cout, matrix <T> &sm)

{
int i, 3J;
for(i = 0; i < sm.MaxRow; i++)
{
cout << endl;
for(j = 0; j < sm.MaxCol; j++)
cout << sm.MatPtr([i] [j] << " *;
}
return(cout);
}
void main()
{

matrix <int> a; // to store float elements
matrix <int> b; // matrix <float> a; matrix <float> b;

734 Mastering C++

cout << "Enter Matrix A details..." << endl;
cin >> a;
cout << "Enter Matrix B details..." << endl;
cin >> b;

cout << "Matrix A is ...";
cout << a << endl;
cout << "Matrix B is ...";
cout << b;
matrix <int> c;
Try
1
’ Cc = a + b;
cout << endl << "C = A + B...";
cout << c;
}
catch(MatError)
{
cout << endl << "Error: Invalid matrix order for addition";
}
matrix <int> 4;
try '
{
d =a - b;
cout << endl << "D = A - B...";
cout << 4d;
}
catch(MatError)
{
cout << endl << "Error: Invalid matrix order for subtraction";
}
matrix <int> e(3, 3);
try
{
e =a * b;
cout << endl << "E = A *.B...";
cout << e;
}
catch(MatError)
{
cout << endl << "Error: Invalid matrix order for multiplication";
}
cout << endl << "(Is matrix A equal to matrix B) ? *;
if(a == b)
cout << "Yes";
else
cout << “"No";

}
Run

Enter Matrix A details...
How many rows ? 1

Chapter 19: Exception Handling 735

How many columns ? 2

Matrix[0,0] = ? 1

Matrix[0,1] = ? 2

Enter Matrix B details...

How many rows ? 2

How many columns ? 1

Matrix(0,0] = ? 1

Matrix[(1,0] = ? 2

Matrix A is ...

12

Matrix B is ...

1

2

Error: Invalid matrix order for addition
Error: Invalid matrix order for subtraction
E=A*B...

=4
<

(Is matrix A equal to matrix B) ? No

In the definition of mat rix class’s member functions, it can be observed that the validity of a matrix
operation is handled by exceptions. For instance, in the overloaded member function operator +,
the statement

if (MaxRow != b.MaxRow || MaxCol != b.MaxCol)
{
cout << "Error: Invalid matrix order for addition";
throw MatError;
}
raises an exception Mat Error if there is a mismatch in the row and column count of the two matrices
involved in the addition operation. Note that, function templates can also raise exceptions.

19.13 Fault Tolerant Design Techniques

Fault tolerant software design techniques can be classified into the following:
(1) N-version programming
(2) Recovery block

These schemes correspond to the hardware fault tolerance methods, static redundancy (fault masking
or voting) and dynamic redundancy respectively.

N-Version Programming

In this technique N-programmers develop N algorithms for the same problem without interacting with
each other. All these algorithms are executed simultaneously on a multiprocessor system and the
majority solution is taken as the correct answer.

Recovery Block

The recovery block structure represents the dynamic redundancy approach to software fault tolerance.
It consists of three software elements: (1) primary routine, which executes critical software functions;
(2) acceptance test, which tests the output of the primary routine after each execution; and (3) alternate
routine, which performs the same function as the primary routine (but may be less capable or slower),
and is invoked by an acceptance test after detection of a fault.

736 Mastering C++

In fault tolerance, once the error has been detected, the next goal is error recovery. The erroneous
state must be replaced by an acceptable valid state from which processing may proceed. Forward error
recovery attempts to identify any damage to the system state and to repair it in some way, so that failure
may be avoided. It simply restores previously saved values of the system state and proceeds from
there, possibly using a different program than the one that led to the error. Backward error recovery can
be used with unanticipated faults and unlike forward error recovery, it can be used to recover from
design faults. Figure 19.8, demonstrates the model of a recovery block and its requirements.

The simplest structure of the recovery block is:
Ensure T
By P
Else
By Q
Else
Error
where T is the acceptance-test condition that is expected to be met by successful execution of either
primary routine P or the alternate routine Q. The structure is easily expanded to accommodate several
alternatives Q1, Q2, .., Qn.

Version - 1 |—» Yes| Output

No

Version-2 —» Yes| Output

Version - N —» Yes Output

No

Signal
FAILURE

Figure 19.8: Recovery block programming model

Chapter 19: Exception Handling 737

19.14 Case-Study on Software Fault Tolerance

A simple example is chosen for the study of fault tolerance programming and the same is used for
implementation in C++. C++ does not provide any explicit constructs for fault tolerance, however, the
constructs throw, try, and catch can be suitably used to simulate the action of fault tolerance.
These exception handling constructs are suitable for implementing the recovery block technique.

Consider a procedure (P) for computing:
sum = i'+j'+k';
The body of P is the sequential composition of the operation,
(cl) i i+3j;
(c2) i = i+k;
The behavior of the above procedure P can be examined by considering various versions of the proce-
dure P (proc p) for different values of the variables i, j, and k.

Version 1:
proc P signal OW
begin

i =

i+ 3 [ov->signal OW];
i=1i+kI[

OV -> i =i - j; signal OW };
end

The semantic definition of the assignment operator = specifies that whenever the evaluation of the
right hand side expression terminates exceptionally (overflow occurs, OV), no new value is assigned
to the left hand side variable. Then, P will terminate exceptionally by executing the recovery block (if it
exists) and signals an OW (overflow word) exception label in the final state.
DataCase 1: i <- MaxValue, j <- MaxValue, and k <- (-MaxValue)
Operation i+3j+k (as per data case 1) is valid, but i+7j exceeds the representation limit leading to an
exception.

Version 2:
proc P signal OW
begin
i=1i+k [OV -> signal OW };
i=i+3j[0OvV->i=1-k; signal OW];
end
This version terminates with a valid final state for the data case 1.
Data Case2: i <- MaxValue, j <- (-MaxValue), and k <- (MaxValue)
Operation i+3j+k (as per data case 2) is valid, but (i+k) exceeds the representation limit leading to an
exception.

Version 3:
proc P signal OW
begin
j =3 +k [OV->signal OW];
i=i+3j[oOV->3=3-k; signal OW];
end

This version terminates with a valid final state for the data case 1 and case 2.

738 Mastering C++

Data Case 3: i <- (-MaxValue), j <- MaxValue, and k <- (MaxValue)
Operation i+3j+k (as per data case 3) is valid, but j+k exceeds the representation limit leading to an
exception.

Recovery Block for Procedure P: 1 <- i+j+k:
Ensure no exception
By Version - 1
Else
By Version - 2
Else By Version - 3
Else FAIL

Recovery Block Implementation
The recovery block technique can be implemented by nesting the exception handling constructs of
C++. To understand the concepts of fault tolerant programming, consider a computer system having a
4-bit processor, supporting both signed and unsigned numbers. Some of its characteristics are the
following.

+ Maximum signed number can be represented is 7 (2*! - 1).

+ Maximum unsigned number can be represented is 15 (2¢- 1).

+ Overflow will be indicated if the result exceeds the limit of representation.

The program recovery. cpp handles all the three data cases and demonstrates the characteris-
tics desired in a fault tolerance program.

// recovery.cpp: Recover Block of sum(i, j, k)
#include <iostream.h>

const int MAX_SIG_INT = 7; // say, maximum signed integer number
const int MAX UNSIG_INT = 15; // say, maximum unsigned integer number
class OVERFLOW {); // Overflow abstract class

int sum(int i, int j, int k)

{

int result;
try
{
// Versionl procedure
result = i+j;
if(result > MAX_SIG_INT)
throw OVERFLOW() ;
result = result+k;
if(result > MAX SIG_INT)
throw OVERFLOW() ;
cout << "Version-1 succeeds" << endl;
}
catch(OVERFLOW)
{
cout << "Version-1 fails" << endl;
try
{
// Version2 procedure
result = i+k;

Chapter 19: Exception Handling 739

if (result > MAX_SIG_INT)
throw OVERFLOW() ;
result = result+j;
if(result > MAX_SIG_INT)
throw OVERFLOW() ;
cout << "Version-2 succeeds" << endl;

}
catch(OVERFLOW)
{
cout << "Version-2 fails" << endl;
try
{
// Version3 procedure
result = j+k;
if(result > MAX_SIG_INT)
throw OVERFLOW() ;
result = result+i;
if(result > MAX_SIG_INT)
throw OVERFLOW() ;
cout << "Version-3 succeeds"” << endl;
}
catch(OVERFLOW)
{
cout << "Error: Overflow. All versions failed" << endl;
}
}
}
return result;
}
void main()
{
int result;
cout << "Sum of 7, -3, 2 computation..." << endl;
result = sum(7, -3, 2); // versionl computes
cout << "Sum = * << result << endl;
cout << "Sum of 7, 2, -3 computation..." << endl;
result = sum(7, 2, -3 }; // version2 computes
cout << "Sum = " << result << endl;
// Device data such that version-3 succeeds
cout << "Sum of 3, 3, 2 computation..." << endl;
result = sum(3, 3, 2); // all version fails
cout << "Sum = " << result << endl;
}
Bun

Sum of 7, -3, 2 computation...
Version-1 succeeds

Sum = 6

sum of 7, 2, -3 computation...
Version-1 fails

740 Mastering C++

Version-2 succeeds

Sum = €

Sum of 3, 3, 2 computation...
Version-1 fails

Version-2 fails

Error: Overflow. All versions failed
Sum = 8

19.15 Memory Allocation Failure Exception

The operator new tries to create an object of the data type Type dynamically by allocating (if possible)
sizeof (Type) bytes in free store (also called the heap). It calculates the size of Type without the
need for an explicit sizeof operator. Further, the pointer returned is of the correct type, pointer to Type,
without the need for explicit casting. The storage duration of the new object is from the point of creation
until the operator delete destroys it by deallocating its memory, or until the end of the program. If
successful, new returns a pointer to the new object. By default, an allocation failure (such as insuffi-
cient or fragmented heap memory) results in the predefined exception xalloc being thrown. The user
program should always be prepared to catch the xalloc exception before trying to access the new
object (unless user-defined new-handler function is defined). The program newl . cpp illustrates the
simple mechanism of handling exceptions raised by the new operator.

// newl.cpp: new operator memory allocation test
#include <except.h>
#include <iostream.h>
void main(void)
{
int * data;
int size;
cout << "How many bytes to be allocate: ";
cin >> size;
try
{
data = new int[size]:
cout << "Memory allocation success, address = " << data;
}
catch(xalloc) // new fail exception
{ // Enter this block only of xalloc is thrown.
// You could request other actions before terminating
cout << "Could not allocate. Bye ...";
exit(1);
}
delete data;
}

Runi

How many bytes to be allocate: 100
Memory allocation success, address = 0xl6be

Chapter 19: Exception Handling 741

Run2

How many bytes to be allocate: 30000
Could not allocate. Bye ...

A request for allocation of O bytes returns a non-null pointer. Repeated requests for zero-size
allocations return distinct, non-null pointers. The program new2 . cpp illustrates the handling of ex-
ceptions while allocating memory for matrix.

// new2.cpp: Allocate a two-dimensional space, initialize, and delete it.
#include <except.h>
#include <iostream.h>
void display(long **data, int m, int n);
void de_allocate(long **data, int m);
long main(void)
{
int m, n; // m rows and n columns
long **data;
cout << "Enter rows and columns count: ";
cin >> m >> n;
try
{ // Test for exceptions
data = new long *[m]; // Step 1: Set up the rows.
for (int j = 0; j < m; Jj++) ,
data[j] = new longIn]; // Step 2: Set up the columns
}
catch(xalloc)
{ // Enter this block only if xalloc is thrown.
// Other actions could be requested before terminating
cout << "Could not allocate. Bye ...";
exit(1);
}
for(long i = 0; i < m; i++)
for(long j = 0; J < n; Jj++)
datalil[3] = 1 + 3; // Arbitrary initialization
display(data, m, n);
de_allocate(data, m);
return 0;
}
void display(long **data, int m, int n)
{
for(int i = 0; i < m; i++)
{
for(int j = 0; j < n; j++)
cout << datali][j] << ™ %;
cout << endl;
}
}
void de_allocate(long **data, int m)
{
for(int i = 0; 1 <m; i++)
delete(] datalil; // Step 1. Delete the columns
delete([] data; // Step 2: Delete the rows

742 Mastering C++

Enter rows and columns count: 100 300
Could not allocate. Bye ...

19.16 Ten Rules for Handling Exceptions Successfully

The amount of madification required to fully exploit the feature of exception handling in existing soft-
ware is high. Experts point out ... If you want to design your own exceptions and integrate them into
preexisting classes, first understand the engineering effort—not only throwing exceptions but to
handle them as well, Many experts are concerned that exceptions will lull programmers into a false
sense of security, believing that their code is handling errors, while in reality the exceptions are com-
pounding more errors and hindering the software development. Implementin g areal class such that it is
exception safe can be challenging; sometimes it is not feasible.

In general, the use of exception handling is complicated by the interaction of C++ language features
with certain C/C++ idioms, as well as the demanding robustness requirements expected of exception-
safe. For instance, the combination of exception handling, templates, dynamic memory, and destructors
make expressions containing multiple side-effects difficult to program robustly. For instance, consider
the following simple C++ pseudocode function:

template <class T>
void SomeClass: :add(parameters)
{
element_array| element_number++]} = T(parameters) ;
//
}
which uses a standard C/C++ idiom (auto incrementing) for adding a new element into an array. How-
ever, both the (unknown) constructors of T and its assi gnment operator might potentially throw excep-
tions. In both the cases, it is unclear whether element_number will be incremented or not. More-
over, the array element being assigned to, will also be in an uncertain state, which might even cause the
destructor of the class SomeClass to fail!

Resources

The most vexing problems of exception handling arise from improper resource management. It leads to
unrelease or double-release of resources. Here, the central concept of a resource is something that
provides functionality. In many cases, a resource is equivalent to a data structure. However, a data
structure is considered as a resource if it lives beyond a single operation. This constraint implies that
resources have an internal state. This state is identified by all the resource’s data values, which may be
modified by operations on the resource. Often, a resource corresponds to one or more components in
a subsystem such as a search table or a database. Smaller entities can also be considered as resources
such as single elements of a search table or records in a database. Likewise, large systems such as a all-
user processes in an operating system or a network of computers can be viewed as resources.

Chapter 19: Exception Handling 743

An important operation on a resource is releasing it, i.e., changing the state of a program in such a
way that this resource is no longer active. In C++, this release is usually accomplished by a destructor-
either in a delete expression, at the end of a block, or within another destructor. However, other opera-
tions can be used to release resources such as:

« The C standard library function fclose () releases a resource of the type FILE *.

« A list node might be shut down by putting it into a free-list rather than returning it to heap memory by
calling delete.

« A stack class may store its elements in an array. In this case, releasing the resource (i.e., top element
of the stack) is often accomplished by a simple decrement of the index. Thus, the top element is no
longer accessible after this operation.

It is necessary to design all the resources in an exception safe way because exceptions might be
thrown at arbitrary places in a program.

Problems with Exception Handling

There are several ways to integrate exception handling into a subsystem. One way is to design it during
the initial development of the subsystem. Often, however, exception handling declarations and state-
ments are added to an existing subsystem after it has been designed with the intent of making it more
robust. In both the cases, especially in the latter, the following issues might be considered and solved.

1. The design of the exception class types and the class hierarchy. It should address the issues such as,
which exceptions should be distinguishable by their type, which should be distinguished by data
member values, which standard exceptions are to be reused, or which special purpose exception
classes are to be defined ?.

2. How to throw an exception i.e., the C++ syntax for raising an exception.

3. How to pass exceptions upwards i.e., what must be done to correctly manage the resources that are
affected as the stack unwinds.

4. How to handle an exception, i.e., remedying the problem that was the original reason for throwing an
exception.

5. Syntactic and readability issues. For instance, indentation, grouping of handlers etc.

6. Use of exception handling in large systems. For example, how to handle more than one exception at
the same time, how to indicate more than one problem with more than one resource etc.

7. Testability of programs with exception handling. For example, how should the “all branches”-cover-
age criterion for sufficient testing be redefined in the presence of exception handling ?

8. Maintenance of exception handling declarations and statements in the life cycle of software systems.
For example, how does the presence of exception handling influence the understandability of code?
How might the extension of class hierarchy interact with exception handling (—for example, if virtual
functions in derived classes need to throw exception different from those in base class 7).

The concept of simply throw an exception if you do not know what to do will reduce program
robustness and frustrate programmers who have to deal with all these exceptions. Therefore, the ten
rules discussed below need to be followed in order to manage the exceptions well:

Rule 1: Do not throw an exception unless absolutely necessary.

A basic principle of software engineering: Allow composition of resources i.e., complex resources are
composed from simpler ones. C++ has many construction methods to facilitate resource composition.
Improper handling of an exception in such systems can lead to bad (inconsistent) states. A bad re-

744 Mastering C++

source cannot be repaired — sometimes it may not even be possible to destroy it. Consider the follow-
ing definition of the member function push () in the Stack class:

template <class T>
void Stack<T>::push(T e)

vec[top++] = e; // vector insertion can cause exception

An exception in the assignment will leave the top index incremented, yet the assignment to the new
top element will not occur. Any access to the top element will find an unassigned value. Such excep-
tions must be carefully designed so that consistency of resource is maintained. Throwing exceptions
cause some resources to be in bad state that could be cleaned up by some handler.

Rule 2: It is not advisable to simply throw some exceptions deep in the call stack and then let C++
unwind the stack until a handler is found; this might leave behind damaged resources that cannot even
be destroyed afterwards.

Two appealing solutions for handling bad resources are:

a) Reorder the statements in each update method so that no bad composite states are encountered,
even between two sub-resources.

b) Modify each update so that if a resource enters a bad state it is restored to the original state it had
before the update occurred.
The push () member function of the Stack class can be reordered as follows:

template <class T>
void Stack<T>::push(T e)

vec([top] = e; // vector insertion can cause exception
++top;

In the above case, the stack index top will not lead to a bad state when exception occurs at
assignment of e to vec.

Restoring the state back to its original value before the operation is started is complex with non-
trivial C++ programs. Classes with virtual functions and templates are commonly used to write code that
calls functions which are unknown at the time when the calling code is written. Therefore, it is much
more harder to integrate exception handling into C++, compared to C. However, it is possible to handle
exceptions without too much effort.

Rule 3: All the resources should be designed in such a way that every technically possible state is a
shut-down state.

The following design principle can be concluded when resources are designed according to Rule 3: The
only thing an exception handler can do with a damaged resource is to shut it down (release or free).

Rule 4: The responsibility for managing a resource lies either with a class (i.e., the destructor of the
class releases the resource); or with the block that acquired the resources (i.e., the resource is released
on exit from the block).

Chapter 19: Exception Handling 745

Consider a simple example of Stack data structure. It has a push () function that sometimes has
to allocate a new array. It does this in the following way:

if (buffer is too small)

{
T *new _buffer = new T[nelems]; // (a)
...fill new_buffer...;
delete [] vec; // (b)

vec = new_buffer;
}
At step (a) in the above segment, the resource new_buf fer is created under the responsibility of the
block. If anything goes wrong after this point, it would be the responsibility of the block to delete the
buffer again (which it does not do in the code). At step (b), the responsibility is transferred to the stack
object by assigning it to the member vec of the class Stack. The responsibility to release resources
now lies with the object’s destructor. Thus, if a function is exited due to an exception, the destructor has
to release the buffer.

Rule 5: Symmetric resource management; resource management of a purely block-local resource: The
responsibility of a block-local resource always lies with the acquiring block.

Of course, with this method, it is not possible to put a resource under the object responsibility,
which is necessary for all asymmetric resource management problems. Two general schemes (or pat-
terns) for solving this type of problem are 1) setting resource of an object and 2) replacing an object
resource. As a building block for these patterns need secure operations that allow to transfer resource
responsibilities without throwing exceptions i.e., all destructors in a C++ program should have an empty
specification throw (). The first problem arises most often in constructors and assignment operators
where a new dynamic resource is needed to store part of the object's value. Resource management for
such a resource is done as indicated in the Rule 6. The second problem arises in the implementation of
containers that automatically adjust their size, for example, the Stack class. Again, clear responsibility
management is the key to the correct design as indicated in the Rule 7.

Rule 6: Resource management for a new object resource. To handle this, use the following pattern:

a) A load resource of suitable size is acquired
b) The resource is used (usually initialized) as necessary
c) The resource is put under an object’s responsibility

The responsibility of the resources lies with the acquiring block in the above step a) and b) and with
some object after ¢). The responsibility transfer at ¢) must happen in such a way that the responsibility
is always with exactly one agent—either the object or the block.

Rule 7: Resource management for replacing an object resource. To handle this situation, use the
following pattern:

a) A local resource of suitable size is acquired under block responsibility

b) The resource is used (usually initialized) as necessary

¢) The responsibility for the object resource and local resource are exchanged
d) The new local resource (the former object resource) is released

The following is an example of such a sequence:

template <class T>
void Stack::pop() (T & e) // throw(bad_alloc, LT, L)
{

746 Mastering C++

if(top == nelems)
{

nelems *= 2;

AutoPtrArray <T> new_buffer = nelems; /7 (a)
for(int i = 0; i < n; ++i) // (b)
new_buffer(i] = vec[i];
new_buffer.swap_with(vec); // (c)
/* destructor of new_buffer */ // (d)

}
vec[top++] = e;

}

Rule 8: When designing a throw-and-keep resource, all operations with side effects on subresources
occurring in some resource constraint must be viewed as resource acquisitions.

Rule 9: Each modification of a subresource of a throw-and-keep resource that might throw an excep-
tion must be wrapped as shown in the following code:
try
{
//... modification...;
}
catch(...)
(- ,
// make subresource invisible to all Qperations
// except those that destroy it ‘
throw;

}
Moreover, all the actions in the catch-block must be secure operations.

Rule 10: Resource management for a new object resource with return statement. To handle this
situation, use the following pattern:

a) A local resource is acquired.

b) The responcibility of the local and the object resources are swapped.

¢) The resource is used as necessary (including the return statement).
If an exception is thrown in (c), perform d) and e):

d) The responsibility of the local and the object resources are swapped back.

e) The exception is re-thrown (in order to avoid losing information about error occurrence and reason
for its occurrence).

The following is an example of such a sequence:

template <class T>

T KeepableStack::pop() (T & e) // throw(XPopOnEmptyStack,...T(T&))

{
if(top == 0)
throw XPopOnEmptyStack ("Stack<T>: :pop");

Auto_uinit new_top (top-1); // ()
new_top.swap_with(top) ; // (b)
try

{

return vec([top]; // (c)

Chapter 19: Exception Handling 747

catch(...)

{
new_top.swap_with(top): // (d)
throw; /7 (e)

}
}

_ Based on the background of the above ten rules in managing exception handling, it is possible to
design new patterns. A new pattern for responsibility management includes transferring responsibili-
ties from an acquiring block to a surrounding block; or from one object to another, and so on.

Review Questions

19.1 What are exceptions ? What are the differences between synchronous and asynchronous
exceptions ?

19.2 Explain the techniques of building reliable software.

19.3 Explain the exception handling model of C++ with various constructs supported by it.

19.4 Write an interactive program to compute square root of a number. The input value must be tested
for validity. If it is negative, the user defined function my_sqgrt () should raise an exception.

19.5 What is the syntax for indicating a list of exceptions that a function can raise. What happens if
an unspecified exception is raised ?

19.6 Write a program to demonstrate the catching of all exceptions.

19.7 What happens when an exception is raised in a try-block having a few constructed objects ?
What is stack unwinding ?

19.8 What happens when a raised exception is not caught by catch-block ?

19.9 How does C++'s throwing and catching exceptions differ from C's set jmp () and longjmp () ?

19.10 Write a program which transfers the control to user defined terminate function when raised

_ exception is uncaught.

19.11 When does the function unexpected () is invoked ? Write a program which installs the user
defined unexpected function to handle exceptions.

19.12 Write an interactive program which divides two complex numbers. Overload divide (/) operator.
Handle cases such as division-by-zero using exceptions.

19.13 Consider that the base class Stack is available. It does not take care of situations such as
overflow or underflow. Enhance this class to MyStack which raises an exception whenever
overflow or underflow error occurs.

19.14 What are the different fault tolerant design techniques available ? Explain recovery block pro-
gramming technique with a suitable example.

19.15 When memory allocation fails, how does the new operator notify the error to the caller ?

19.16 Write a program to add two vectors. Each vector object, instance of the class Vector, is having
dynamic allocation of their data members. Catch exception raised by new operator and take
corrective actions.

19.17 Explain why addition of exceptions to most software is likely to diminish the overall reliability
and impede the software development process if extraordinary care is not taken ?

19.18 List the ten rules for handling exceptions successfully

19.19 What are the issues that need to be considered while designing fault tolerant software ?

19.20 Write a program for matrix multiplication. The matrix multiplication function should notify if the
order of matrix is invalid using exceptions.

20

OO0 Analysis, Design and Development

OOP systems are sold on the promise of improved productivity through object reuse and high level of
code modularity. These aspects precisely lead to their greatest benefit, namely, improved software
quality, considering “the objective of OO design is to mirror real world objects” in the software systems.
OO0 Technology encompasses not only OOPs but also other OO concepts such as user interface,
analysis, design, and data base management systems. Lastly, using OOPs facilitates an iterative style of
development rather than the traditional waterfall approaches. The object-oriented approach centers
around modeling the real world in terms of objects, in contrast to the traditional approaches which
empbhasize function oriented view and separates data-and-functions.

| delete I | update | »| new

S S

Customer Account

-~~~ System Operation
—— Data Flow
(a) Structured computational model ... » Control Flow

Account_1 Account_History
_____ ’p|roll_over N
A 1 ‘ AcctHist
i attributes attributes
oo ¥ archive r

: Customer Do Transaction
S T N R N\
Customer : Traps
: attributes

attributes

-4 -- - »[upaats] |
: undo

(b) Object-oriented computational model

Figure 20.1: Structured Vs. Object-oriented computational modei

Software engineering deals with the various tools, methods, and procedures required for controlling
the complexity of software development, project management, and its maintenance. Object-oriented

Chapter 20: OO Analysis, Design and Development 749

development emphasizes on using programming languages with certain unique capabilities for real-
world object modeling. Object model is the conceptual framework for object-oriented development. The
four major elements of this model are encapsulation, abstraction, modularity, and hierarchy. The compu-
tational model of the structured and object-oriented model is shown in Figure 20.1. OO development
tends to be iterative and incremental growth, compared to conventional development.

A systems development methodology combines tools and techniques to guide the process of
developing large scale information systems. Dramatic improvement in hardware performance and the
adoption of high-level languages has enabled to build large and more complicated systems. The con-
ventional methodologies decompose the process of system development life cycle into discrete project
phases with frozen deliverables or formal documents, which serve as the input to the next phase:

20.1 Software Life Cycle: Water-Fall Model

Software systems pass through two principal phases during their life cycle:

« The development phase

« The operations and maintenance phase
The development phase begins when the need for the product is identified; it ends when the imple-
mented product is tested and delivered for operation. Operation and maintenance include all activities
during the operation of the software, such as fixing bugs discovered during operation, making perfor-
mance enhancements, adapting the system to its environment, adding minor features, etc. During this
phase, the system may also evolve when major-functions are added. To illustrate the software life cycle,
the waterfall model or conventional life cycle model (see Figure 20.2) has proven convenient.

Problem
definition
h

A

Analysis

h

Design

Coding

A

Testing

A

Maintenance

A A

Figure 20.2: Water fall model for software development

750 Mastering C++

Conventional life cycle of software development passes through various phases. They include
definition of system requirements, generation of software requirements, software design, coding, and
final testing and reliability modeling.

Problem Definition: The first stage in the development process is understanding the problem in
question and its requirements. Requirements may be specified by the end-user, or, if the software
system is embedded within a larger system, they may be derived from the system requirements. Require-
ments, therefore, include the context in which the problem arose, functionality expected from the sys-
tem, and system constraints. At this point, the managers and software specialists decide whether it is
feasible to build the system.

Analysis: A system analyst observes the feasibility of system development. If system development is
cost effective based on the management approval, then design, coding, etc., phases will be executed.,
otherwise, it will be aborted; no progress of other phases will be made. Analysis phase delivers require-
ments specification. If project is approved, software specialists try to understand the requirements and
define the specifications to meet those requirements. The system specification serves as an interface
between the designer and implementor as well as between the implementor and user. This describes
external behavior of the software without bothering about the internal implementation. Specification
must be carefully checked for suitability, omission, inconsistencies, and ambiguities.

Design: Design is the process of mapping system requirements defined during analysis to an abstract
representation of a specific-system implementation, meetin g the cost and performance constraints. The
detailed design involves the analysis of various alternatives, including tradeoff among the number of
possible solutions based on the existing constraints.

It describes how the system is to be implemented so that, it meets the specification. Since the whole
system may be very complex, the main design objective is decomposition. The system is divided into
modules and their interactions. The modules may then be further decomposed into submodules and
procedures until each module can be implemented easily.

Coding/Implementation: Once the specification and the design of the software is over, the choice
of a programming language remains as one of the most critical aspect in producing reliable software.
Implementation involves the actual production of code. Although it is one of the important phases. it
takes only 20% of the total development time. The reliability of the code produced depends on the
coding standards, implementation strategies and the facilities provided by the host language for reli-
able programming.

Testing: The truth hurts: Many software development organizations pay lip service to quality—
shipping untested software when deadline pressures dictate,a not-so-surprising conclusion drawn
from many surveys,

Testing is the process of exercising or evaluating a system or system component by manual or
automated means to verify that it satisfies the specified requirements. Normally, most of the testing and
debugging is done after the system has been implemented (integrated testing). A large percentage of
errors are discovered during testing originates in the requirement and design phases. Requirement and
design errors are more expensive to correct (typically, about 100 times more expensive than implemen-
tation errors). Clearly, more efforts are needed to be spent in requirement definition and design, which
must be considered as separate stages in software development. People must become more aware of the
importance of earlier phases in the software life cycle.

